Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yavuz Köysal, ${ }^{\text {a }}$ Ayșen Ağar, ${ }^{\text {b }}$ Nesuhi Akdemir ${ }^{\text {b }}$ and Șamil Issık ${ }^{\mathbf{a} *}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey

Correspondence e-mail: yavuzk@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.091$
Data-to-parameter ratio $=13.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1,4-Bis(3,4-dicyanophenoxy)-2-butyne

In the crystal structure of the title compound, $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$, the molecule is arranged around a twofold axis passing through the mid-point of the $\mathrm{C} \equiv \mathrm{C}$ triple bond. The dicyanophenoxy group is planar. The molecule is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding.

Comment

The title compound, (I), is a precursor in the synthesis of polymeric phthalocyanines and high-performance aromatic polymers (McKeown, 1998; Takekoshi, 1987). Phthalocyanine derivatives displaying photophysical properties, electrontransfer ability and oxido-reduction capabilities have been studied for application in electrophotography, optical daterecording systems, electronic devices, photovoltaic cells, fuel cells and electrochromic displays (McKeown, 1998). Polymeric phthalocyanines have been described for use as dyes and industrial high-technology materials and are also of additional interest because of their high thermostability (Leznoff \& Lever, 1989-1996). Against this background, we present here the structure of the title compound, (I).

(I)

In the molecule of (I), a twofold axis passes through the mid-point of the $\mathrm{C} \equiv \mathrm{C}$ triple bond (Fig. 1). The $\mathrm{C} \equiv \mathrm{N}$ triplebond distances in the cyano groups are in good agreement with our previous report (Işık \& Köysal, 2006). Atom O1 and the CN groups are coplanar with atoms C1-C6, the largest deviation from this plane being 0.065 (2) \AA for O 1 .

There are weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding interactions present in the crystal structure of (I), which link the molecules into a discrete chain of dimers (Table 1, Fig. 2).

Experimental

2-Butyne-1,4-diol ($0.30 \mathrm{~g}, 3.49 \mathrm{mmol}$) and 4-nitrophthalonitrile $(1.16 \mathrm{~g}, 6.70 \mathrm{mmol})$ were dissolved in dry dimethylformamide (40 ml) with stirring under N_{2}. Dry fine-powdered potassium carbonate $(2.5 \mathrm{~g}, 18.12 \mathrm{mmol})$ was added in portions ($10 \times 1 \mathrm{mmol}$) every 10 min . The reaction mixture was stirred for 48 h at 313 K and then poured into ice-water (250 g). The product was filtered off and washed with water and ethanol to give a white product (yield 0.60 g , 53.12%). Single crystals of (I) were obtained from a solution in dry dimethylformamide at room temperature via slow evaporation (m.p. 455-458 K).

Figure 1
A view of compound (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitray radii. [Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.]

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=338.33$
Monoclinic, $C 2 / c$
$a=22.023(7) \AA$
$b=9.570(2) \AA$
$c=8.339(2) \AA$
$\beta=108.30(2)^{\circ}$
$V=1668.6(8) \AA^{3}$

$$
Z=4
$$

$$
D_{x}=1.347 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

$$
\mu=0.09 \mathrm{~mm}^{-1}
$$

$$
T=293(2) \mathrm{K}
$$

Prism, colourless $0.75 \times 0.21 \times 0.06 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer φ scans
Absorption correction: integration

$$
(X-R E D 32 ; \text { Stoe } \& \mathrm{Cie}, 2002)
$$

7313 measured reflections 1641 independent reflections 1042 reflections with $I>2 \sigma(I)$

$$
T_{\min }=0.960, T_{\max }=0.994
$$

$R_{\text {int }}=0.058$
$\theta_{\text {max }}=26.0^{\circ}$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.044 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.10 \mathrm{e}_{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}$
$S=0.99=0.091$
1641 reflections
118 parameters
Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.93	2.48	$3.369(2)$	159

Symmetry code: (i) $-x+1,-y+1,-z$.

H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA\left(\mathrm{C}_{\text {aromatic }}\right)$ and $0.97 \AA\left(\mathrm{CH}_{2}\right)$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 2
Part of the packing, showing the formation of a chain of dimers via $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted for clarity. [Symmetry code: (i) $1-x$, $1-y,-z$.]

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Işık, Ş. \& Köysal, Y. (2006). Acta Cryst. E62, o671-o672.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 and 4. Weinheim and New York: VCH Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Takekoshi, T. (1987). Polym. J. 19, 191-202.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

